

BIJU PATNAIK INSTITUE OF IT & MANAGEMENT STUDIES 4th SEMESTER (BATCH 2018-20)

CLASS TEST - I Operations Research Applications (18MBA403D)

Total Marks: 15 Time: 1 Hour

Q1. All Questions are compulsory each questions carry 1 mark

(1x5=5)

- (a) Define Dynamic Programing
- (b) Differentiate between linear programming & integer programming.
- (c) What are the objectives of Routing Problem?
- (d) What are the service channel used in Queuing Model?
- (e) How to convert on unbalanced TP to balanced TP?

Q2. Answers two questions each questions carry 2.5 marks

(2.5x2=5)

- (a) Write the scope of operation research.
- (b) A sales man wants to visit the four cities A, B, C & D. The distance in KM from each city to the other cities is given by the table.

	A	В	С	D
A	-	45	15	39
В	40	-	49	39
C	81	31	-	59
D	39	39	35	-

Determine the smallest route covered by the salesman.

(c) In a factory there are six jobs to persons, each of which should go through two machines A & B in the order AB. The processing time (hrs) for the jobs are given below. Determine the optimal sequence of the job & total elapsed Time (T).

Job	\mathbf{J}_1	J_2	J_3	J_4	J_5	J_6
M-A	1	3	8	5	6	3
M-B	5	6	3	2	2	10

Q3. Answer one question out of two questions

(5x1=5)

(a) A firm has divided its marketing area into 3 zones. The amount of sales depends upon the number of salesmen in each zone. The firm has been collecting the data regarding sales & sales man in each area over a number of past years.

For the next year firm has only 9 salesmen & the problem is to allocate these salesmen to three different zones, so that the total sales are maximum.

(Profit in Rs'000)

No. of salesmen	Zone 1	Zone 2	Zone 3
0	30	35	42
1	45	45	54
2	60	52	60
3	60	52	60
4	79	72	82
5	90	82	95
6	98	93	102
7	105	98	110
8	100	100	110
9	90	100	110

(b) Find the optimum integer solution to the following LPP.

 $Max Z = 5x_1 + 8x_2$

Stc. $X_1 + 2x_2 \le 8$

 $4x_1 + x_2 \le 10$

And $x_1, x_2 \ge 0$

And integer
